Article 5316

Title of the article

ON SPECTRUM’S DISCRETE NATURE IN THE PROBLEM OF AZIMUTHAL SYMMETRICAL WAVES OF AN OPEN NONHOMOGENEOUS ANISOTROPIC WAVEGUIDE WITH LONGITUDINAL MAGNETIZATION 

Authors

Smirnov Yuriy Gennad'evich, Doctor of physical and mathematical sciences, professor, head of sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Smol'kin Evgeniy Yur'evich, Candidate of physical and mathematical sciences, research assistant, the research center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), e.g.smolkin@hotmail.com
Snegur Maksim Olegovich, Student, Penza State University (40 Krasnaya street, Penza, Russia), snegur.max15@gmail.com

Index UDK

517.958;621.372.8

DOI

10.21685/2072-3040-2017-3-5

Abstract

Background. The aim of the work is to research a spectrum of the problem of propogating electromagnetic waves of an anisotrpopic magnetic nonhomogeneous waveguiding structure.
Materials and methods. To find a solution we use variational problem formulation. The variational problem is reduced to studying of an operator-function that falls into nonlinear dependency from the spectral parameter. The article investigates properties of the operator-function necessary to analyze its spectral features.
Results. We have proved theorems on the spectrum’s discerete nature and on distributionof operator-function’s eigenvalues on a complex plance.
Conclusions. The suggested analytical method allows to prove the spectrum’sdiscrete nature in the problem of azimuthal symmetrical waves of an open nonhomogeneousanisotropic waveguide with longitudinal magnetization. Besides, thegiven method may be used in research of spectral properties of more complicatedwaveguiding structures.

Key words

problem of electromagnetic eave propagation, ferrite bar, Maxwell’s equation, differential equations, anisotropic nonhomogeneous waveguidingstructure, variational formulation, Sobolev’s spaces

Download PDF
References

1. Il'inskiy A. S., Shestopalov Yu. V. Primenenie metodov spektral'noy teorii v zadachakh rasprostraneniya voln [Application of spectral theory’s methods in wave propagation problems]. Moscow: Izd-vo MGU, 1989. 2. Smirnov Yu. G. Differentsial'nye uravneniya [Differential equations]. 1991, vol. 27,no. 1, pp. 140–147.
3. Smirnov Yu. G. Doklady AN SSSR [Reports of AS USSR]. 1990, vol. 312, no. 3,pp. 597–599.
4. Smirnov Yu. G. Matematicheskie metody issledovaniya zadach elektrodinamiki [MAthematicalresearch methods in problems of electrodynamics]. Penza: Inf.-izd. tsentrPenzGU, 2009. 268 p.
5. Delitsin A. L. Differentsial'nye uravneniya [Differential equations]. 2000, vol. 36, no. 5.
6. Adams R. Sobolev spaces. New York: Academic Press, 1975.
7. Smirnov Yu. G., Smol'kin E. Yu. Differentsial'nye uravneniya [Differential equations].2017, vol. 53, no. 10, pp. 1298–1309.
8. Abramovits M., Stigan I. Spravochnik po spetsial'nym funktsiyam [Special functionsreference book]. Moscow: Nauka, 1979. 832 p.
9. Gradshteyn I. S., Ryzhik I. M. Tablitsy integralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and products]. Moscow: Nauka, 1971.
10. Gokhberg I. Ts., Kreyn M. G. Vvedenie v teoriyu lineynykh ne- samosopryazhennykh operatorov v gil'bertovom prostranstve [Introduction into the theory of linear nonselfadjoint operators in Hilbert space]. Moscow: Nauka, 1965. 448 p.

 

Дата создания: 29.01.2018 14:26
Дата обновления: 29.01.2018 15:11